Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 66
1.
Viruses ; 16(2)2024 Feb 07.
Article En | MEDLINE | ID: mdl-38400039

SARS-CoV-2 infection remains a global burden. Despite intensive research, the mechanism and dynamics of early viral replication are not completely understood, such as the kinetics of the formation of genomic RNA (gRNA), sub-genomic RNA (sgRNA), and replication centers/organelles (ROs). We employed single-molecule RNA-fluorescence in situ hybridization (smRNA-FISH) to simultaneously detect viral gRNA and sgRNA and immunofluorescence to detect nsp3 protein, a marker for the formation of RO, and carried out a time-course analysis. We found that single molecules of gRNA are visible within the cytoplasm at 30 min post infection (p.i.). Starting from 2 h p.i., most of the viral RNA existed in clusters/speckles, some of which were surrounded by single molecules of sgRNA. These speckles associated with nsp3 protein starting at 3 h p.i., indicating that these were precursors to ROs. Furthermore, RNA replication was asynchronous, as cells with RNA at all stages of replication were found at any given time point. Our probes detected the SARS-CoV-2 variants of concern, and also suggested that the BA.1 strain exhibited a slower rate of replication kinetics than the WA1 strain. Our results provide insights into the kinetics of SARS-CoV-2 early post-entry events, which will facilitate identification of new therapeutic targets for early-stage replication to combat COVID-19.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , COVID-19/metabolism , RNA Replication , In Situ Hybridization, Fluorescence/methods , Reactive Oxygen Species/metabolism , Subgenomic RNA , RNA, Guide, CRISPR-Cas Systems , Fluorescent Antibody Technique , Proteins/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism
2.
mBio ; 15(2): e0292823, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38193729

Serum titers of SARS-CoV-2-neutralizing antibodies (nAbs) correlate well with protection from symptomatic COVID-19 but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are lifelong after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We, therefore, sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain, and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated the potent induction of high titer nAbs in measles-immune mice and confirmed the significant contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin display of the SARS-CoV-2 spike glycoprotein. In animals primed and boosted with a measles virus (MeV) vaccine encoding the ancestral SARS-CoV-2 spike, high-titer nAb responses against ancestral virus strains were only weakly cross-reactive with the Omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the Omicron BA.1 spike, antibody titers to both ancestral and Omicron strains were robustly elevated, and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that by engineering the antigen, we can develop potent measles-based vaccine candidates against SARS-CoV-2.IMPORTANCEAlthough the live-attenuated measles virus (MeV) is one of the safest and most efficacious human vaccines, a measles-vectored COVID-19 vaccine candidate expressing the SARS-CoV-2 spike failed to elicit neutralizing antibody (nAb) responses in a phase-1 clinical trial, especially in measles-immune individuals. Here, we constructed a comprehensive panel of MeV-based COVID-19 vaccine candidates using a MeV with extensive modifications on the envelope glycoproteins (MeV-MR). We show that artificial trimerization of the spike is critical for the induction of nAbs and that their magnitude can be significantly augmented when the spike protein is synchronously fused to a dodecahedral scaffold. Furthermore, preexisting measles immunity did not abolish heterologous immunity elicited by our vector. Our results highlight the importance of antigen optimization in the development of spike-based COVID-19 vaccines and therapies.


COVID-19 , Measles , Humans , Animals , Mice , COVID-19 Vaccines , Antibodies, Neutralizing , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , Measles Vaccine/genetics , Measles virus/genetics , Antibodies, Viral , Membrane Glycoproteins
3.
PLoS Pathog ; 20(1): e1011805, 2024 Jan.
Article En | MEDLINE | ID: mdl-38198521

Hybrid immunity (vaccination + natural infection) to SARS-CoV-2 provides superior protection to re-infection. We performed immune profiling studies during breakthrough infections in mRNA-vaccinated hamsters to evaluate hybrid immunity induction. The mRNA vaccine, BNT162b2, was dosed to induce binding antibody titers against ancestral spike, but inefficient serum virus neutralization of ancestral SARS-CoV-2 or variants of concern (VoCs). Vaccination reduced morbidity and controlled lung virus titers for ancestral virus and Alpha but allowed breakthrough infections in Beta, Delta and Mu-challenged hamsters. Vaccination primed for T cell responses that were boosted by infection. Infection back-boosted neutralizing antibody responses against ancestral virus and VoCs. Hybrid immunity resulted in more cross-reactive sera, reflected by smaller antigenic cartography distances. Transcriptomics post-infection reflects both vaccination status and disease course and suggests a role for interstitial macrophages in vaccine-mediated protection. Therefore, protection by vaccination, even in the absence of high titers of neutralizing antibodies in the serum, correlates with recall of broadly reactive B- and T-cell responses.


COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , BNT162 Vaccine , Breakthrough Infections , COVID-19/prevention & control , Mesocricetus , Antibodies, Neutralizing , Postoperative Complications , RNA, Messenger/genetics , Immunity , Antibodies, Viral , Vaccination
4.
Methods Mol Biol ; 2733: 37-46, 2024.
Article En | MEDLINE | ID: mdl-38064025

Reverse genetics allows for the generation of recombinant infectious viruses from viral sequences or complete viral genomes cloned into plasmids. Using reverse genetics, it is then possible to introduce changes in the genome of infectious viruses for multiple applications.Newcastle disease virus (NDV) is a non-segmented, negative-sense RNA virus that has been amenable to manipulation by reverse genetics for more than two decades. Since then, recombinant NDVs have been extensively used as viral vectors to express heterologous proteins. We describe the key steps required to design and introduce an additional transcription unit in the genome of the Newcastle disease virus for the efficient expression of a heterologous gene.


Newcastle Disease , Viral Vaccines , Animals , Newcastle disease virus/genetics , Genetic Vectors/genetics , Plasmids/genetics , Genome, Viral , Newcastle Disease/genetics , Chickens/genetics
5.
Dalton Trans ; 52(37): 13190-13198, 2023 Sep 26.
Article En | MEDLINE | ID: mdl-37665007

This study describes how the optimization of Cu2O/CuO heterostructures can enhance their (photo)catalytic performance. More specifically, the evaluation of catalysts with different Cu2O/CuO molar ratios was used to optimize their performance for the hydrogenation of 4-nitrophenol under both blue-LED light and dark conditions. For the first time, we analyzed the effect of blue LED irradiation on this reaction and found that when blue LEDs are used as the light source, a Cu2O/CuO ratio of 0.15 results in rate constants 7 to 3 times higher than those of catalysts with either lower (0.01) or higher (0.42) ratios. Furthermore, this photocatalyst shows good stability, >70% after 5 cycles, and excellent chemoselectivity in the selective reduction of the nitro group in the presence of other functionalities, i.e. -COOH, -CONH2 and -OH.

6.
bioRxiv ; 2023 Aug 31.
Article En | MEDLINE | ID: mdl-37693425

Current influenza vaccine strategies have yet to overcome significant obstacles, including rapid antigenic drift of seasonal influenza viruses, in generating efficacious long-term humoral immunity. Due to the necessity of germinal center formation in generating long-lived high affinity antibodies, the germinal center has increasingly become a target for the development of novel or improvement of less-efficacious vaccines. However, there remains a major gap in current influenza research to effectively target T follicular helper cells during vaccination to alter the germinal center reaction. In this study, we used a heterologous infection or immunization priming strategy to seed an antigen-specific memory CD4+ T cell pool prior to influenza infection in mice to evaluate the effect of recalled memory T follicular helper cells in increased help to influenza-specific primary B cells and enhanced generation of neutralizing antibodies. We found that heterologous priming with intranasal infection with acute lymphocytic choriomeningitis virus (LCMV) or intramuscular immunization with adjuvanted recombinant LCMV glycoprotein induced increased antigen-specific effector CD4+ T and B cellular responses following infection with a recombinant influenza strain that expresses LCMV glycoprotein. Heterologously primed mice had increased expansion of secondary Th1 and Tfh cell subsets, including increased CD4+ TRM cells in the lung. However, the early enhancement of the germinal center cellular response following influenza infection did not impact influenza-specific antibody generation or B cell repertoires compared to primary influenza infection. Overall, our study suggests that while heterologous infection/immunization priming of CD4+ T cells is able to enhance the early germinal center reaction, further studies to understand how to target the germinal center and CD4+ T cells specifically to increase long-lived antiviral humoral immunity are needed.

7.
Cell ; 186(21): 4597-4614.e26, 2023 10 12.
Article En | MEDLINE | ID: mdl-37738970

SARS-CoV-2 variants of concern (VOCs) emerged during the COVID-19 pandemic. Here, we used unbiased systems approaches to study the host-selective forces driving VOC evolution. We discovered that VOCs evolved convergent strategies to remodel the host by modulating viral RNA and protein levels, altering viral and host protein phosphorylation, and rewiring virus-host protein-protein interactions. Integrative computational analyses revealed that although Alpha, Beta, Gamma, and Delta ultimately converged to suppress interferon-stimulated genes (ISGs), Omicron BA.1 did not. ISG suppression correlated with the expression of viral innate immune antagonist proteins, including Orf6, N, and Orf9b, which we mapped to specific mutations. Later Omicron subvariants BA.4 and BA.5 more potently suppressed innate immunity than early subvariant BA.1, which correlated with Orf6 levels, although muted in BA.4 by a mutation that disrupts the Orf6-nuclear pore interaction. Our findings suggest that SARS-CoV-2 convergent evolution overcame human adaptive and innate immune barriers, laying the groundwork to tackle future pandemics.


COVID-19 , SARS-CoV-2 , Humans , COVID-19/virology , Immunity, Innate/genetics , Pandemics , SARS-CoV-2/genetics
8.
Cell Host Microbe ; 31(10): 1668-1684.e12, 2023 10 11.
Article En | MEDLINE | ID: mdl-37738983

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes several proteins that inhibit host interferon responses. Among these, ORF6 antagonizes interferon signaling by disrupting nucleocytoplasmic trafficking through interactions with the nuclear pore complex components Nup98-Rae1. However, the roles and contributions of ORF6 during physiological infection remain unexplored. We assessed the role of ORF6 during infection using recombinant viruses carrying a deletion or loss-of-function (LoF) mutation in ORF6. ORF6 plays key roles in interferon antagonism and viral pathogenesis by interfering with nuclear import and specifically the translocation of IRF and STAT transcription factors. Additionally, ORF6 inhibits cellular mRNA export, resulting in the remodeling of the host cell proteome, and regulates viral protein expression. Interestingly, the ORF6:D61L mutation that emerged in the Omicron BA.2 and BA.4 variants exhibits reduced interactions with Nup98-Rae1 and consequently impairs immune evasion. Our findings highlight the role of ORF6 in antagonizing innate immunity and emphasize the importance of studying the immune evasion strategies of SARS-CoV-2.


COVID-19 , SARS-CoV-2 , Viral Proteins , Humans , COVID-19/virology , Immunity, Innate , Interferons/genetics , Interferons/metabolism , SARS-CoV-2/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
9.
bioRxiv ; 2023 May 23.
Article En | MEDLINE | ID: mdl-37425792

Hybrid immunity to SARS-CoV-2 provides superior protection to re-infection. We performed immune profiling studies during breakthrough infections in mRNA-vaccinated hamsters to evaluate hybrid immunity induction. mRNA vaccine, BNT162b2, was dosed to induce binding antibody titers against ancestral spike, but inefficient serum virus neutralization of ancestral SARS-CoV-2 or variants of concern (VoCs). Vaccination reduced morbidity and controlled lung virus titers for ancestral virus and Alpha but allowed breakthrough infections in Beta, Delta and Mu-challenged hamsters. Vaccination primed T cell responses that were boosted by infection. Infection back-boosted neutralizing antibody responses against ancestral virus and VoCs. Hybrid immunity resulted in more cross-reactive sera. Transcriptomics post-infection reflects both vaccination status and disease course and suggests a role for interstitial macrophages in vaccine-mediated protection. Therefore, protection by vaccination, even in the absence of high titers of neutralizing antibodies in the serum, correlates with recall of broadly reactive B- and T-cell responses.

10.
bioRxiv ; 2022 Dec 12.
Article En | MEDLINE | ID: mdl-36561180

SARS-CoV-2 infection has caused a major global burden. Despite intensive research, the mechanism and dynamics of early viral replication are not completely understood including the kinetics of formation of plus stranded genomic and subgenomic RNAs (gRNA and sgRNA) starting from the RNA from the first virus that enters the cell. We employed single-molecule RNA-fluorescence in situ hybridization (smRNA-FISH) to simultaneously detect viral gRNA and sgRNA in infected cells and carried out a time course analysis to determine the kinetics of their replication. We visualized the single molecules of gRNA within the cytoplasm of infected cells 30 minutes post-infection and detected the co-expression of gRNA and sgRNA within two hours post-infection. Furthermore, we observed the formation of a replication organelle (RO) from a single RNA, which led to the formation of multiple ROs within the same cells. Single molecule analysis indicated that while gRNA resided in the center of these ROs, the sgRNAs were found to radiate and migrate out of these structures. Our results also indicated that after the initial delay, there was a rapid but asynchronous replication, and the gRNA and sgRNAs dispersed throughout the cell within 4-5 hours post-infection forming multiple ROs that filled the entire cytoplasm. These results provide insight into the kinetics of early post-entry events of SARS-CoV-2 and the formation of RO, which will help to understand the molecular events associated with viral infection and facilitate the identification of new therapeutic targets that can curb the virus at a very early stage of replication to combat COVID-19. Author Summary: SARS-CoV-2 infection continues to be a global burden. Soon after the entry, SARS-CoV-2 replicates by an elaborate process, producing genomic and subgenomic RNAs (gRNA and sgRNAs) within specialized structures called replication organelles (RO). Many questions including the timing of multiplication of gRNA and sgRNA, the generation, subcellular localization, and function of the ROs, and the mechanism of vRNA synthesis within ROs is not completely understood. Here, we have developed probes and methods to simultaneously detect the viral gRNA and a sgRNA at single cell single molecule resolution and have employed a method to scan thousands of cells to visualize the early kinetics of gRNA and sgRNA synthesis soon after the viral entry into the cell. Our results reveal that the replication is asynchronous and ROs are rapidly formed from a single RNA that enters the cell within 2 hours, which multiply to fill the entire cell cytoplasm within ~4 hours after infection. Furthermore, our studies provide a first glimpse of the gRNA and sgRNA synthesis within ROs at single molecule resolution. Our studies may facilitate the development of drugs that inhibit the virus at the earliest possible stages of replication to minimize the pathogenic impact of viral infection.

11.
bioRxiv ; 2022 Dec 16.
Article En | MEDLINE | ID: mdl-36561187

Serum titers of SARS-CoV-2 neutralizing antibodies (nAb) correlate well with protection from symptomatic COVID-19, but decay rapidly in the months following vaccination or infection. In contrast, measles-protective nAb titers are life-long after measles vaccination, possibly due to persistence of the live-attenuated virus in lymphoid tissues. We therefore sought to generate a live recombinant measles vaccine capable of driving high SARS-CoV-2 nAb responses. Since previous clinical testing of a live measles vaccine encoding a SARS-CoV-2 spike glycoprotein resulted in suboptimal anti-spike antibody titers, our new vectors were designed to encode prefusion-stabilized SARS-CoV-2 spike glycoproteins, trimerized via an inserted peptide domain and displayed on a dodecahedral miniferritin scaffold. Additionally, to circumvent the blunting of vaccine efficacy by preformed anti-measles antibodies, we extensively modified the measles surface glycoproteins. Comprehensive in vivo mouse testing demonstrated potent induction of high titer nAb in measles-immune mice and confirmed the significant incremental contributions to overall potency afforded by prefusion stabilization, trimerization, and miniferritin-display of the SARS-CoV-2 spike glycoprotein, and vaccine resurfacing. In animals primed and boosted with a MeV vaccine encoding the ancestral SARS-CoV-2 spike, high titer nAb responses against ancestral virus strains were only weakly cross-reactive with the omicron variant. However, in primed animals that were boosted with a MeV vaccine encoding the omicron BA.1 spike, antibody titers to both ancestral and omicron strains were robustly elevated and the passive transfer of serum from these animals protected K18-ACE2 mice from infection and morbidity after exposure to BA.1 and WA1/2020 strains. Our results demonstrate that antigen engineering can enable the development of potent measles-based SARS-CoV-2 vaccine candidates.

12.
Sci Rep ; 12(1): 22552, 2022 12 29.
Article En | MEDLINE | ID: mdl-36581658

Human respiratory syncytial virus (HRSV) is a major cause of severe lower respiratory tract disease in infants and the elderly, yet no safe, effective vaccine is commercially available. Closely related bovine RSV (BRSV) causes respiratory disease in young calves, with many similar features to those seen in HRSV. We previously showed that a Newcastle disease virus (NDV)-vectored vaccine expressing the F glycoprotein of HRSV reduced viral loads in lungs of mice and cotton rats and protected from HRSV. However, clinical signs and pathogenesis of disease in laboratory animals following HRSV infection differs from that observed in human infants. Thus, we examined whether a similar vaccine would protect neonatal calves from BRSV infection. Codon-optimized rNDV vaccine (rNDV-BRSV Fopt) was constructed and administered to colostrum-deprived calves. The rNDV-BRSV Fopt vaccine was well-tolerated and there was no evidence of vaccine-enhanced disease in the upper airways or lungs of these calves compared to the non-vaccinated calves. We found two intranasal doses reduces severity of gross and microscopic lesions and decreases viral load in the lungs. Furthermore, serum neutralizing antibodies were generated in vaccinated calves. Finally, reduced lung CXC chemokine levels were observed in vaccinated calves after BRSV challenge. In summary, we have shown that rNDV-BRSV Fopt vaccine is safe in colostrum-deprived calves, and is effective in reducing lung lesions, and decreasing viral load in upper respiratory tract and lungs after challenge.


Cattle Diseases , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Bovine , Respiratory Syncytial Virus, Human , Female , Pregnancy , Animals , Cattle , Humans , Aged , Newcastle disease virus , Colostrum , Respiratory Syncytial Virus Vaccines/genetics , Antibodies, Viral , Cattle Diseases/prevention & control
13.
Med ; 3(10): 705-721.e11, 2022 10 14.
Article En | MEDLINE | ID: mdl-36044897

BACKGROUND: The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern, in particular the newly emerged Omicron (B.1.1.529) variant and its BA.X lineages, has rendered ineffective a number of previously FDA emergency use authorized SARS-CoV-2 neutralizing antibody therapies. Furthermore, those approved antibodies with neutralizing activity against Omicron BA.1 are reportedly ineffective against the subset of Omicron subvariants that contain a R346K substitution, BA.1.1, and the more recently emergent BA.2, demonstrating the continued need for discovery and characterization of candidate therapeutic antibodies with the breadth and potency of neutralizing activity required to treat newly diagnosed COVID-19 linked to recently emerged variants of concern. METHODS: Following a campaign of antibody discovery based on the vaccination of Harbor H2L2 mice with defined SARS-CoV-2 spike domains, we have characterized the activity of a large collection of spike-binding antibodies and identified a lead neutralizing human IgG1 LALA antibody, STI-9167. FINDINGS: STI-9167 has potent, broad-spectrum neutralizing activity against the current SARS-COV-2 variants of concern and retained activity against each of the tested Omicron subvariants in both pseudotype and live virus neutralization assays. Furthermore, STI-9167 nAb administered intranasally or intravenously provided protection against weight loss and reduced virus lung titers to levels below the limit of quantitation in Omicron-infected K18-hACE2 transgenic mice. CONCLUSIONS: With this established activity profile, a cGMP cell line has been developed and used to produce cGMP drug product intended for intravenous or intranasal use in human clinical trials. FUNDING: Funded by CRIPT (no. 75N93021R00014), DARPA (HR0011-19-2-0020), and NCI Seronet (U54CA260560).


Antibodies, Neutralizing , COVID-19 Drug Treatment , Administration, Intranasal , Animals , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Humans , Immunoglobulin G , Membrane Glycoproteins , Mice , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
14.
Cancer Res Commun ; 2(7): 602-615, 2022 07.
Article En | MEDLINE | ID: mdl-35937459

Avulaviruses represent a diverse subfamily of non-segmented negative strand RNA viruses infecting avian species worldwide. To date, 22 different serotypes have been identified in a variety of avian hosts, including wild and domestic birds. APMV-1, also known as Newcastle disease virus (NDV), is the only avulavirus that has been extensively characterized due to its relevance for the poultry industry and, more recently, its inherent oncolytic activity and potential as a cancer therapeutic. An array of both naturally-occurring and recombinant APMV-1 strains has been tested in different preclinical models and clinical trials, highlighting NDV as a promising viral agent for human cancer therapy. To date, the oncolytic potential of other closely related avulaviruses remains unknown. Here, we have examined the in vivo anti-tumor capability of prototype strains of APMV serotypes -2, -3, -4, -6, -7, -8 and -9 in syngeneic murine colon carcinoma and melanoma tumor models. Our studies have identified APMV-4 Duck/Hong Kong/D3/1975 virus as a novel oncolytic agent with greater therapeutic potential than one of the NDV clinical candidate strains, La Sota. Intratumoral administration of the naturally-occurring APMV-4 virus significantly extends survival, promotes complete remission, and confers protection against re-challenge in both murine colon carcinoma and melanoma tumor models. Furthermore, we have designed a plasmid rescue strategy that allows us to develop recombinant APMV-4-based viruses. The infectious clone rAPMV-4 preserves the extraordinary antitumor capacity of its natural counterpart, paving the way to a promising next generation of viral therapeutics.


Avulavirus , Carcinoma , Colonic Neoplasms , Melanoma , Animals , Humans , Mice , Avulavirus/genetics , Newcastle disease virus/genetics , Birds , Colonic Neoplasms/therapy
15.
Nat Commun ; 13(1): 3921, 2022 07 07.
Article En | MEDLINE | ID: mdl-35798721

Due to differences in human and murine angiotensin converting enzyme 2 (ACE-2) receptor, initially available SARS-CoV-2 isolates could not infect mice. Here we show that serial passaging of USA-WA1/2020 strain in mouse lungs results in "mouse-adapted" SARS-CoV-2 (MA-SARS-CoV-2) with mutations in S, M, and N genes, and a twelve-nucleotide insertion in the S gene. MA-SARS-CoV-2 infection causes mild disease, with more pronounced morbidity depending on genetic background and in aged and obese mice. Two mutations in the S gene associated with mouse adaptation (N501Y, H655Y) are present in SARS-CoV-2 variants of concern (VoCs). N501Y in the receptor binding domain of viruses of the B.1.1.7, B.1.351, P.1 and B.1.1.529 lineages (Alpha, Beta, Gamma and Omicron variants) is associated with high transmissibility and allows VoCs to infect wild type mice. We further show that S protein mutations of MA-SARS-CoV-2 do not affect neutralization efficiency by human convalescent and post vaccination sera.


COVID-19 , Immune Evasion , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Aged , Animals , COVID-19/virology , Humans , Immune Sera , Mice , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
16.
Microbiol Spectr ; 10(3): e0153822, 2022 06 29.
Article En | MEDLINE | ID: mdl-35658571

Equitable access to vaccines is necessary to limit the global impact of the coronavirus disease 2019 (COVID-19) pandemic and the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. In previous studies, we described the development of a low-cost vaccine based on a Newcastle Disease virus (NDV) expressing the prefusion-stabilized spike protein from SARS-CoV-2, named NDV-HXP-S. Here, we present the development of next-generation NDV-HXP-S variant vaccines, which express the stabilized spike protein of the Beta, Gamma, and Delta variants of concerns (VOC). Combinations of variant vaccines in bivalent, trivalent, and tetravalent formulations were tested for immunogenicity and protection in mice. We show that the trivalent preparation, composed of the ancestral Wuhan, Beta, and Delta vaccines, substantially increases the levels of protection and of cross-neutralizing antibodies against mismatched, phylogenetically distant variants, including the currently circulating Omicron variant. IMPORTANCE This manuscript describes an extended work on the Newcastle disease virus (NDV)-based vaccine focusing on multivalent formulations of NDV vectors expressing different prefusion-stabilized versions of the spike proteins of different SARS-CoV-2 variants of concern (VOC). We demonstrate here that this low-cost NDV platform can be easily adapted to construct vaccines against SARS-CoV-2 variants. Importantly, we show that the trivalent preparation, composed of the ancestral Wuhan, Beta, and Delta vaccines, substantially increases the levels of protection and of cross-neutralizing antibodies against mismatched, phylogenetically distant variants, including the currently circulating Omicron variant. We believe that these findings will help to guide efforts for pandemic preparedness against new variants in the future.


COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Humans , Mice , Newcastle disease virus/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
17.
EClinicalMedicine ; 45: 101323, 2022 Mar.
Article En | MEDLINE | ID: mdl-35284808

Background: Production of affordable coronavirus disease 2019 (COVID-19) vaccines in low- and middle-income countries is needed. NDV-HXP-S is an inactivated egg-based recombinant Newcastle disease virus vaccine expressing the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It's being developed by public sector manufacturers in Thailand, Vietnam, and Brazil; herein are initial results from Thailand. Methods: This phase 1 stage of a randomised, dose-escalation, observer-blind, placebo-controlled, phase 1/2 trial was conducted at the Vaccine Trial Centre, Mahidol University (Bangkok). Healthy males and non-pregnant females, aged 18-59 years and negative for SARS-CoV-2 antibodies, were eligible. Participants were randomised to receive one of six treatments by intramuscular injection twice, 28 days apart: 1 µg, 1 µg+CpG1018 (a toll-like receptor 9 agonist), 3 µg, 3 µg+CpG1018, 10 µg, or placebo. Participants and personnel assessing outcomes were masked to treatment. The primary outcomes were solicited and spontaneously reported adverse events (AEs) during 7 and 28 days after each vaccination, respectively. Secondary outcomes were immunogenicity measures (anti-S IgG and pseudotyped virus neutralisation). An interim analysis assessed safety at day 57 in treatment-exposed individuals and immunogenicity through day 43 per protocol. ClinicalTrials.gov (NCT04764422). Findings: Between March 20 and April 23, 2021, 377 individuals were screened and 210 were enroled (35 per group); all received dose one; five missed dose two. The most common solicited AEs among vaccinees, all predominantly mild, were injection site pain (<63%), fatigue (<35%), headache (<32%), and myalgia (<32%). The proportion reporting a vaccine-related AE ranged from 5·7% to 17·1% among vaccine groups and was 2·9% in controls; there was no vaccine-related serious adverse event. The 10 µg formulation's immunogenicity ranked best, followed by 3 µg+CpG1018, 3 µg, 1 µg+CpG1018, and 1 µg formulations. On day 43, the geometric mean concentrations of 50% neutralising antibody ranged from 122·23 international units per mL (IU/mL; 1 µg, 95% confidence interval (CI) 86·40-172·91) to 474·35 IU/mL (10 µg, 95% CI 320·90-701·19), with 93·9% to 100% of vaccine groups attaining a ≥ 4-fold increase over baseline. Interpretation: NDV-HXP-S had an acceptable safety profile and potent immunogenicity. The 3 µg and 3 µg+CpG1018 formulations advanced to phase 2. Funding: National Vaccine Institute (Thailand), National Research Council (Thailand), Bill & Melinda Gates Foundation, National Institutes of Health (USA).

18.
bioRxiv ; 2022 Mar 22.
Article En | MEDLINE | ID: mdl-35350201

Equitable access to vaccines is necessary to limit the global impact of the coronavirus disease 2019 (COVID-19) pandemic and the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. In previous studies, we described the development of a low-cost vaccine based on a Newcastle Disease virus (NDV) expressing the prefusion stabilized spike protein from SARS-CoV-2, named NDV-HXP-S. Here, we present the development of next-generation NDV-HXP-S variant vaccines, which express the stabilized spike protein of the Beta, Gamma and Delta variants of concerns (VOC). Combinations of variant vaccines in bivalent, trivalent and tetravalent formulations were tested for immunogenicity and protection in mice. We show that the trivalent preparation, composed of the ancestral Wuhan, Beta and Delta vaccines, substantially increases the levels of protection and of cross-neutralizing antibodies against mismatched, phylogenetically distant variants, including the currently circulating Omicron variant.

19.
Cell Host Microbe ; 30(3): 373-387.e7, 2022 03 09.
Article En | MEDLINE | ID: mdl-35150638

SARS-CoV-2 lineages have diverged into highly prevalent variants termed "variants of concern" (VOCs). Here, we characterized emerging SARS-CoV-2 spike polymorphisms in vitro and in vivo to understand their impact on transmissibility and virus pathogenicity and fitness. We demonstrate that the substitution S:655Y, represented in the gamma and omicron VOCs, enhances viral replication and spike protein cleavage. The S:655Y substitution was transmitted more efficiently than its ancestor S:655H in the hamster infection model and was able to outcompete S:655H in the hamster model and in a human primary airway system. Finally, we analyzed a set of emerging SARS-CoV-2 variants to investigate how different sets of mutations may impact spike processing. All VOCs tested exhibited increased spike cleavage and fusogenic capacity. Taken together, our study demonstrates that the spike mutations present in VOCs that become epidemiologically prevalent in humans are linked to an increase in spike processing and virus transmission.


COVID-19 , SARS-CoV-2 , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
20.
Sci Rep ; 11(1): 22164, 2021 11 12.
Article En | MEDLINE | ID: mdl-34773048

The influenza A non-structural protein 1 (NS1) is known for its ability to hinder the synthesis of type I interferon (IFN) during viral infection. Influenza viruses lacking NS1 (ΔNS1) are under clinical development as live attenuated human influenza virus vaccines and induce potent influenza virus-specific humoral and cellular adaptive immune responses. Attenuation of ΔNS1 influenza viruses is due to their high IFN inducing properties, that limit their replication in vivo. This study demonstrates that pre-treatment with a ΔNS1 virus results in an antiviral state which prevents subsequent replication of homologous and heterologous viruses, preventing disease from virus respiratory pathogens, including SARS-CoV-2. Our studies suggest that ΔNS1 influenza viruses could be used for the prophylaxis of influenza, SARS-CoV-2 and other human respiratory viral infections, and that an influenza virus vaccine based on ΔNS1 live attenuated viruses would confer broad protection against influenza virus infection from the moment of administration, first by non-specific innate immune induction, followed by specific adaptive immunity.


Influenza A virus/immunology , Influenza Vaccines/therapeutic use , Interferon Type I/immunology , Orthomyxoviridae Infections/prevention & control , Vaccines, Attenuated/therapeutic use , Viral Nonstructural Proteins/immunology , Adaptive Immunity , Animals , COVID-19/immunology , COVID-19/prevention & control , Chickens , Gene Deletion , Humans , Influenza A virus/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Viral Nonstructural Proteins/genetics
...